Pharmacology of inotropes and vasopressors
3.3 Recognises and manages the patient with circulatory failure
4.4 Uses fluids and vasoactive / inotropic drugs to support the circulation

PR_BK_41 Drugs and the sympathetic nervous system: adrenergic receptors and molecular mechanisms of action: Indications for pharmacological use of naturally occurring catecholamines and synthetic analogues.

PR_BK_43 Cardiovascular system: general: drug effects on the heart [inotropy and chronotropy] and on the circulation: arterial and venous effects; systemic and pulmonary effects

PR_BK_44 Inotropes and pressors: Classification; site of action. Synthetic inotropes compared with adrenaline

PB_BK_38 Cardiac muscle contraction
Definitions

- **Inotrope**: increases cardiac output by increasing velocity and force of myocardial contraction

- **Vasopressor**: causes contraction of arteriolar and venous smooth muscle

- **Inodilator**: increases cardiac output by a combination of inotropic and vasodilator effects
Mechanisms of drug action

- **Sympathomimetics**
 - α-agonists
 - β-agonists
 - Dopamine agonists (D₁-like, D₂-like)
 - Phosphodiesterase inhibitors (PDE 3)

- **Others**
 - Vasopressin (V₁)
 - Levosimendan
 - Cardiac glycosides
α-agonists

α₁ receptors: vascular smooth muscle contraction

Diagram:
- **α agonist** → **α₁ receptor** (cell membrane)
- **Gq**
- **phospholipase C**
- **PiP₂** → **IP₃** → ↑cytosolic Ca²⁺ → **protein kinase C** → **protein kinase** (calmodulin-dependent)
- **DAG**
- **VASOCONSTRICION**
β-agonists

- \(\beta_1 \) (\(\beta_2 \))
 - Inotropy (force)
 - Chronotropy (rate)
 - Dromotropy (conduction)

- \(\beta_2 \)
 - Vasodilatation
Phosphodiesterase 3 inhibitors

- Heart and vascular smooth muscle
- Inodilators
- Lusitropic (improved diastolic relaxation)
Vasopressin (AVP, ADH)

- Hypothalamic nonapeptide hormone, released from posterior pituitary
- V_1 receptor agonist - potent arterial vasoconstrictor
- V_2 receptors in renal collecting duct – water reabsorption
Levosimendan

- Calcium sensitiser - ↑ sensitivity of contractile proteins to Ca\(^{2+}\) without ↑ intracellular Ca\(^{2+}\)

- Inotropic and chronotropic effects

- Independent of adrenoceptors and cAMP

- Vasodilator: opens ATP-sensitive K\(^+\) channels on vascular smooth muscle
Cardiac glycosides: digoxin

Inhibits Na\(^+\)/K\(^+\) pump in myocardial cell membrane

→ intracellular Na\(^+\)
→ intracellular Ca\(^{2+}\) (Na\(^+\):Ca\(^{2+}\) exchanger)
→ force of contraction
Drugs: Catecholamines

Aromatic ring + two adjacent OH groups (*catechol*) + ethylamine group

Substitutions on ethylamine group → sympathomimetic activity

Dopamine, adrenaline, noradrenaline are naturally occurring
Synthetic Catecholamines

Isoprenaline

Dobutamine

Dopexamine
<table>
<thead>
<tr>
<th>Agent</th>
<th>β_1 effects</th>
<th>β_2 effects</th>
<th>α effects</th>
<th>DA effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inotropy</td>
<td>Vasodilatation</td>
<td>Vasoconstriction</td>
<td>Renal/ mesenteric vasodilatation Natriuresis</td>
</tr>
<tr>
<td></td>
<td>Chronotropy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dromotropy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noradrenaline</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>-</td>
</tr>
<tr>
<td>Adrenaline</td>
<td>β effects predominate at low dose, α at high dose</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Dopamine</td>
<td>DA effects at low dose, β at moderate dose and α at high dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dobutamine</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Dopexamine</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Isoprenaline</td>
<td>++++</td>
<td>++++</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Pharmakokinetics of catecholamines

- $t_{1/2}$ 1-2 minutes

- Re-uptake into tissues \rightarrow Metabolism by MAO and COMT

- Steady-state plasma concentration in 5-10 min

- Short half-life allows rapid titration
Benefits and side-effects

β1
Increased cardiac output

- Tachycardia, arrhythmia, ↑ myocardial O₂ consumption, myocardial ischaemia

β2
Vasodilatation, ↑ cardiac output, ↓ myocardial O₂ consumption

- Hypotension

α
↑ systolic and diastolic blood pressure

- May decrease renal, mesenteric and skin blood flow.
 ↑ cardiac afterload and myocardial oxygen demand.
Adrenaline (epinephrine)

- Potent β-agonist $< 0.1 \mu g/kg/min$

- Potent α_1-agonist $> 0.1 \mu g/kg/min \rightarrow$ vasoconstriction

- Renal and mesenteric vasoconstriction \rightarrow ischaemia and renal failure

- Metabolic - hyperglycaemia and hyperlactaemia

- Cardiac toxicity with prolonged, high dosage
Adrenaline

Anaphylaxis
- blocks mediator release
- reverses bronchospasm and vasodilatation
- 50-100 µg (0.5-1ml of 1:10,000) IV
- 0.5 to 1mg (0.5-1ml of 1:1,000) IM

Cardiac arrest
- vasoconstriction → diversion of blood to essential organs
- diastolic pressure and coronary flow increased
- 1mg IV, every 3-5 minutes of resuscitation
Adrenaline

Cardiogenic shock
- increased cardiac output
- Arrhythmogenic
- \uparrow afterload & myocardial O_2 demand
- second-line treatment

Septic shock
- restores MAP and cardiac output
- ischaemia of intestinal mucosa, lactic acidosis, hyperglycaemia
- \uparrow renal vascular resistance \rightarrow reduced RBF
- 2^{nd}-line agent
Noradrenaline (norepinephrine)

- $a_1 > \beta$ above 0.05µg/kg/min
- arterial constriction \rightarrow ↑ SBP and DBP
- venous constriction \rightarrow ↑ venous return
- reflex bradycardia
- effect on cardiac output variable/ minimal
- renal and mesenteric vasoconstriction (?)
- high doses \rightarrow digital gangrene
- myocyte apoptosis in prolonged infusion
Noradrenaline

Septic shock
- first line vasopressor (Surviving Sepsis Campaign)
- ensure adequate fluid resuscitation first
- ↑ gastric mucosal and renal perfusion in vasodilated, normovolaemic cases

Anaphylaxis
- Second line agent, for resistant hypotension
Dopamine

- Direct: α, β, DA agonist
- Indirect: releases NA from sympathetic nerve terminals

- 2-5µg/kg/min (DA) → ↑ RBF, diuresis, natriuresis
- 5-10 µg/kg/min (β) → ↑ cardiac output
- 10-20 µg/kg/min (α) → vasoconstriction

- Arrhythmogenic, ↓ hypoxic drive, delirium, vomiting, immunosuppression
- Vasopressor in septic shock
- No evidence for renal protection
Dobutamine

- Synthetic derivative of isoprenaline
- \(\beta \)-agonist (weak \(\alpha_1 \)). \(\beta_1 > \beta_2 \).
- 2-20 \(\mu \)g/kg/min \(\rightarrow \) inotropic + moderate ↑ HR
- SVR unchanged or slightly reduced
- Myocardial \(O_2 \) demand increased (stress testing)
Dobutamine

Cardiogenic shock/ acute heart failure
- first-line inotrope
- ↑ cardiac output + reduced ventricular afterload
- may cause hypotension

Septic shock (with ↓ CO)
- noradrenaline + dobutamine as effective as adrenaline, with fewer side-effects
Dopexamine

- Synthetic analogue of dopamine
- 60x potency of dopamine at β_2 receptors, 1/3 potency at DA receptors
- No α activity
- Inodilator
- Dose-dependent tachycardia
- ? Beneficial effects on inflammation, splanchnic circulation and renal function
Isoprenaline

- Synthetic
- Potent, non-selective β-agonist
- Historical role in treatment of bradycardia and heart block
- Superseded by more effective agents with fewer side effects (tachycardia, arrhythmia)
Non-catecholamine sympathomimetic amines

- Metaraminol, ephedrine, phenylephrine
- Lack 2nd hydroxyl group on 1o aromatic ring.
Metaraminol

- **α and β agonist, mainly vasoconstrictor**
- **↑ SBP and DBP**
- Reverses hypotension caused by GA/ spinal anaesthesia
- Vasoconstriction may → transient bradycardia
- Indirect β-effects → tachyphylaxis
- 0.5-1mg IV, repeated as necessary
Ephedrine and phenylephrine

Ephedrine
- α and β
- Vasopressor and inotrope in anaesthetic-induced hypotension
- Useful for bradycardic, hypotensive patient
- Uterine blood flow maintained - drug of choice in pregnancy
- 3-6mg IV, repeated as necessary. 25-50mg IM
- Action partly indirect → tachyphylaxis

Phenylephrine
- Selective α-agonist
- Rapid onset of action, duration 5-10 minutes
- Vasoconstrictor - IV bolus (0.1-0.5mg) or infusion.
Vasopressin

- V_1 agonist (and V_2 receptors in renal collecting duct)
- Potent vasoconstrictor
- CPR: not shown to produce better results than adrenaline
- Rescue therapy in septic shock resistant to NA. No mortality benefit of low-dose AVP over NA (VASST trial)
- GI ischaemia, ischaemic skin lesions, reduced CO
Phosphodiesterase inhibitors

- Amrinone, milrinone, enoximone
- \uparrow CO, \downarrow afterload, minimal effect on myocardial O_2 demand
- Lusitropic – improved diastolic relaxation
- Adrenoceptors not involved - no tachyphylaxis
- Treatment of AHF with reduced cardiac output: little evidence of long-term survival benefit
- Low CO states following cardiomyotommy
- Long $t_{1/2}$ (milrinone 2 hours)
- May cause hypotension
Levosimendan

- Inodilator
- Diastolic relaxation maintained
- Beneficial effects on myocardial energy balance
- Effective in acute and chronic heart failure
Management of shock

Inotropes and vasopressors are used for the treatment of circulatory failure unresponsive to fluid therapy alone.
Management of shock

ABC

Aim - adequate perfusion and oxygen delivery to tissues

\[
\text{DO}_2 = \text{arterial oxygen content} \times \text{cardiac output}
\]

\[
\text{DO}_2 = [\text{SpO2} \times \text{Hb} \times 1.34] \times \text{CO}
\]
Management of shock

Optimise LV preload

Blood pressure = CO x SVR

CO = SV x HR

SV: Preload
 Afterload
 Contractility
Management of shock

Optimise LV preload

Fluid challenge

Monitor: Clinical signs
CVP
PAOP (Swan-Ganz)
Stroke volume variation (LiDCO)
Global end-diastolic volume (PiCCO)
Corrected flow time (ODM)
Management of shock

Optimise CO and BP

- Low CO \rightarrow inotrope

- Low SVR \rightarrow vasopressor

- Mixed pathology \rightarrow combination
Management of shock

What are optimal cardiac output and BP?

Adequacy of tissue perfusion indicated by:

- Urine output
- Conscious state
- Skin temperature
- Serum lactate
- Acid-base status
Cardiogenic shock

- Optimise preload
- Pump failure
- Pure inotrope or inodilator
- Avoid ↑ afterload/ myocardial O\textsubscript{2} consumption
- Avoid arrhythmia

- In MI, inotropes may cause infarct expansion, ↑ cytosolic Ca2+ and apoptosis
Cardiogenic shock/ AHF

Dobutamine
- American College of Cardiology/ AHA recommendation for acute MI with moderate hypotension
- May cause hypotension and tachycardia - caution in profound shock
- Combination with dopamine may limit side effects

Adrenaline
- Low-dose infusion in profound shock
- High dose → ↑ afterload and myocardial O₂ demand
- Arrhythmia, promotes coronary thrombosis

Noradrenaline
- Has been recommended for severe, refractory cardiogenic shock
- Improves coronary perfusion (↑ DBP)
- Antithrombotic effect
- ↑ afterload and myocardial oxygen demand
Acute Heart Failure

- Aim to ↑ CO, ↓ end-diastolic pressure, improve perfusion and diuresis, allowing re-introduction of ACEIs, diuretics, β-blockers

- Dobutamine – but CHF associated with uncoupling of adrenoceptors from intracellular transduction → resistance to treatment

- Positive inotropes increase mortality in CHF (↑ intracellular Ca^{2+})
Acute Heart Failure

PDE3 inhibitors

- CCF with ↓ cardiac output
- Minimal effect on myocardial O$_2$ demand
- Hypotension and long t$_{1/2}$
- Similar outcomes to dobutamine

Levosimendan

- CCF with ↓ cardiac output
- No ↑ myocardial O$_2$ demand
- ? Survival benefit compared with dobutamine
Septic shock

Vasopressor

- Surviving Sepsis Campaign: 1st line noradrenaline or vasopressin (alternative or in addition)

- Adrenaline may → intestinal ischaemia, lactic acidosis, hyperglycaemia, reduced RBF

- Dopamine in selected cases (no risk of arrhythmia, low cardiac output)
Septic shock

Inotrope (↓ CO)

- Dobutamine

- Noradrenaline + dobutamine effective as adrenaline in restoring CO and BP, but less effect on lactate and GI perfusion
Septic shock

Other

- Corticosteroids (SSC)
- Dopexamine?
Dopamine:

a) may produce ventricular arrhythmias
b) increases mesenteric blood flow at high doses
c) crosses the blood-brain barrier
d) is synthesised from L-dopa
e) is inactivated in alkaline solution
The following are precursors of adrenaline:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Tyrosine</td>
<td>T</td>
</tr>
<tr>
<td>b) Phenylalanine</td>
<td>T</td>
</tr>
<tr>
<td>c) Dopamine</td>
<td>T</td>
</tr>
<tr>
<td>d) Isoprenaline</td>
<td>F</td>
</tr>
<tr>
<td>e) Noradrenaline</td>
<td>T</td>
</tr>
</tbody>
</table>
Dopexamine:

a) causes arterial vasoconstriction F
b) is an agonist at dopaminergic D1 and D2 receptors T
c) increases the force of myocardial contraction T
d) increases renal blood flow T
e) causes arrhythmias T
Dobutamine:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>is structurally similar to isoprenaline</td>
</tr>
<tr>
<td>b)</td>
<td>activates adenyl cyclase</td>
</tr>
<tr>
<td>c)</td>
<td>has a selective action on beta-1 adrenoreceptors</td>
</tr>
<tr>
<td>d)</td>
<td>has a half-life of 2 minutes</td>
</tr>
<tr>
<td>e)</td>
<td>increases the left ventricular end-diastolic pressure</td>
</tr>
</tbody>
</table>

Trials

